If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-1=195
We move all terms to the left:
2x^2-1-(195)=0
We add all the numbers together, and all the variables
2x^2-196=0
a = 2; b = 0; c = -196;
Δ = b2-4ac
Δ = 02-4·2·(-196)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*2}=\frac{0-28\sqrt{2}}{4} =-\frac{28\sqrt{2}}{4} =-7\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*2}=\frac{0+28\sqrt{2}}{4} =\frac{28\sqrt{2}}{4} =7\sqrt{2} $
| -0.4a-3=7 | | -.5x-12=-3x-29.5 | | 24.5x+90.5=32x+45.5 | | Y=2x^2+5x-5 | | 60n^2+234n+84=0 | | 5e-1=3e+5 | | -16+x-9x=16 | | 3+6=2x-9 | | 3y-41=180 | | 104+x=3x | | 9=x-2(x-2+x+4) | | 0.5(5-7x)=8-4x-16 | | l=2(2.5)-1 | | l=2(3.5)-1 | | 16p-6=4p+24 | | X+0=10x | | v+1.34=5.92 | | 4x^2x(2)=32 | | 16(d+1=-20 | | 5(t)=-16t^2+100t+5 | | 16(d+1)=-2 | | -3u=2(9u-2) | | 1.90+x=14.40 | | -3x=2x+1/2 | | -3x=-2x+1/3 | | 17+47=7x | | 15=4q+q | | 90=64+64+x | | -2x-5=1/3 | | 25=0.5(188-x) | | w/5+13=23 | | g+3=1.5 |